

1916: first electric aircraft

PKZ - 1 - Petróczy, Kármán, Žurovec PKZ - 2 - Žurovec (in the photos)

First electrically driven tethered observation helicopter

I. Jankovics, I. Gal, D. Rohacs

Economics Determining the required energy for flight mission of electric/ hybrid aircraft

MŰEGYETEM 1782

Department of Aeronautics, Naval Architecture and Railway Vehicles Budapest University of Technology and

- 1. Introduction
- 2. Preliminary consideration
- 3. Practical aspects
- 4. New approach to aircraft conceptual design
- 5. Energy calculations
- 6. Results and discussions
- 7. Conclusions

- The aircraft with electric / hybrid propulsion systems are most promising future cleaner emerging technologies.
- The low specific energy of batteries' technologies is a hard barrier in future development of the electric aircraft.
- > New methods are required for conceptual design that
 - > should include the energy balance evaluation and
 - managing the energy fractions for elements of the flight mission.
- This paper deals with possible estimation of the mission energy and energy fractions for elements of the flight missions.

- The available batteries technologies have two serious barriers delaying their deployment:
 - Iow specific energy (Wh/kg)
 - thermal instability
- The aircraft with the analogical performance comparing to conventional aircraft can not be developed.
- New conceptual design approach was developed by IDEA-E project that
 - based on mass and energy balance evaluation and
 - introduction new constraints on mass and energy fractions

2. Preliminary consideration

> Alternatives for maximum power

2. Preliminary consideration

2. Preliminary consideration

3. New approach to aircraft conceptual design

- Operational concept development
- > Preliminary calculations
- Required maximum power estimation
- Evaluation of the required total (mission) energy for flight
- > Novelties:
 - Estimation of the mass and energy balances
 - New constraints for mass and energy fractions

3. New approach to aircraft conceptual design

> Mass balance equation (life equation)

$$M_{TO} = M_a + M_{sy} + M_{ps} + M_f + M_b + M_{pl} + \dots = M_{TO} \sum_i \overline{M}_i$$

- > Its application: $M_{TO} = \frac{M_e + M_{pl}}{1 \frac{M_f}{M_{TO}} \frac{M_b}{M_{TO}}}$
- > Energy balance equation:

$$e_{efm} = e_{TA} + e_{TO} + e_C + e_{CR} + e_{DE} + e_{LO} + e_{AL} = e_{efm} \sum_i \bar{e}_i$$

3. New approach to aircraft conceptual design

Mass balance equation

$$\begin{split} m_{\mathrm{TO}} &= m_{\mathrm{c}} + m_{\mathrm{a}} + m_{\mathrm{e}} + m_{\mathrm{f}} + m_{\mathrm{s}} + \dots \\ 1 &= \overline{m}_{\mathrm{c}} + \overline{m}_{\mathrm{a}} + \overline{m}_{\mathrm{e}} + \overline{m}_{\mathrm{f}} + \overline{m}_{\mathrm{s}} + \dots \\ \overline{m}_{i} &= \frac{m_{i}}{m_{\mathrm{TO}}}, \quad \forall i \end{split}$$

The relative weights depend on the applied designed methods, characteristics of the materials, technology, production culture, etc.

- > Constraints should be defined for mass and energy fractions
- > The further analysis is required
- The required energy for elements of the flight missions might be determined by use of these formulas.

Flight mission legs (elements)

sea level

> Traditionally it is an easy calculation

$$\frac{\Delta W_{f_{fm}}}{W_{TO}} = \sum_{i=1}^{n} \frac{\Delta W_{f_{fml_i}}}{W_{TO}}$$

- Used energy of 1 kg fuel (kerosene) equals to about 3 kWh (with 0. 25 total efficiency coefficient, that means
- required electric energy equals to 3.75 kWh (total electric and propeller) efficiency = 0,8) that might be stored in
- > 12 13 kg of batteries.

> Traditionally calculation for cruise part of flight:

$$T = D,$$
 $L = W,$ $T = D\frac{L}{L} = \frac{W}{\frac{L}{D}} = \frac{W}{k}$

$$\frac{dW}{dt} = -TSFC \ T = -TSFC \ \frac{W}{k}$$

$$dt = -\frac{k}{TSFC}\frac{dW}{W}$$

$$t_{CR} = -\frac{k}{TSFC} \ln \frac{W_{CR_{initial}}}{W_{CR_{final}}}$$

$$W_{f_{CR}} = TSFC \ T_{CR} \ t_{CR} = TSFC \ T_{CR} \ \frac{R_{CR}}{V_{CR}}$$
$$\left(or \ W_{f_{CR}} = kT_{CR} ln \frac{W_{CR_{initial}}}{W_{CR_{final}}}\right)$$

> Direct calculation (energy for cruise part)

$$e_{CR} = P_{CR} t_{CR}$$

$$e_{CR} = P_{CR}t_{CR} = T_{CR}V_{CR}\frac{R_{CR}}{V_{CR}} = T_{CR}R_{CR}$$

$$\frac{P_{ref}}{W_{TO}} = \frac{\beta}{\alpha \eta_{pst}} \left\{ \frac{qS}{\beta W_{TO}} \left[C_{D_0} + K_1 \left(\frac{n\beta}{q} \frac{W_{TO}}{S} \right) + K_1 \left(\frac{n\beta}{q} \frac{W_{TO}}{S} \right)^2 + \frac{D_e}{qS} \right] + \frac{d}{dt} \left(h + \frac{V^2}{2g} \right) \right\} V$$

> This methods applicable to all mission legs

5. Results and discussions

> Unconventional hybrid UAV is designed conceptually.

Layout of the developed small cargo UAV with hybrid propulsion system (1.fuselage, 2.- engine inlet, 3.- control box, 4.- batteries, 5.- gas turbine with electric generator, 6.- propellers, 7.- fix wing, 8.- flexible part of wing, 9.exhaust gas inlet, 10.- containers, 11.- covering linen)

Wing principal structure (1.- propellers, 2.- electric motors, 3.- hard (composite) wing section, 4.- batteries, 5.- beam – tube, 6.- rod rolling the linen, 7.- flexible (composite), deflectable tip rod, 8.- flexible part of wing (linen))

5. Results and discussions

Energy balance of developed hybrid UAV

flight phases	energy (kWh)	electric energy (kWh)	fossil used energy (kWh)	battery mass (kg)	total fuel (1)
taxiing	0.07	0.07		0.29	0.05
take-off (finished at 500 m - that is 4 minutes on P_{max})	3.67	3.67		14.67	2.29
climb to 3000 m (climb rate 3 m/s and $0.9 P_{max}$)	11.46		11.46		7.16
cruise (altitude 3 km. speed 25 m/s (90 km/h.))	20.32		20.32		12.70
descent	0.00				
approach /landing (from 500 m)	1.80	1.80		7.20	1.13
reserve	12.40	4.13	8.27	16.53	5.17
total	49.72	9.67	40.05	38.69	28.49

- The electric / hybrid aircraft will be entered into operation after 2020 (small aircraft) and 2030
- The aircraft conceptual design methodology can not applied because the low specific energy of batteries that increases mass of aircraft radically.
- New concept is developed by using the mass and energy balance estimation and introducing new constraints.
- The energy balance might be determined by the describing equations.
- The developed unconventional hybrid UAV demonstrated the applicability of the developed conceptual design methodology.

7. Acknowledgement

This work was supported by

Hungarian national EFOP-3.6.1-16-2016-00014 project titled by "Investigation and development of the disruptive technologies for e-mobility and their integration into the engineering education" (IDEA-E)